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The clonal origin of myeloproliferative neo-

plasms (MPN) has been first implied by work of 

John W. Adamson, Philip J. Fialkov and co lleagues 

(1), who in 1976 performed X-chromosome inacti-

vation pattern (XCIP) studies in patients with MPN 

using restriction fragment length polymorphisms 

in the X-chromosomal gene glucose-6-phosphate 

dehydrogenase (G6PDH) (2). They demonstrated 

that peripheral blood cells in two female patients 

with polycythemia vera (PV) expressed the G6PDH 

derived solely from one of the two parental X chro-

mosomes, indicating that hematopoiesis is clonal 

(1). Later the same authors showed that lymphoid 

cells can also be part of the MPN clone in essential 

thrombocythemia (ET) and PV, implying that the 

MPN disease initiated at the level of a multipotent 

hematopoietic stem cell (HSC) (3).

For many decades XCIP was the only me-

thodology to study clonality in MPN. The major 

advantage of XCIP is that the analysis can be ap-

plied in the absence of any knowledge about the 

molecular and genetic alterations. Among the di-

sadvantages are that only female patients can be 

studied and that the clone must have expanded 

reached clonal dominance. The latter has to do 

with the fact that the ratio in the inactivation of 

the two X-chromosomes must substantially devi-

ate from the expected 50:50 random distribution, 

a phenomenon also called after its author Mary 

F. Lyon “Lyonization” (4), in order to reach a mini-

mal threshold for statistical significance. In most 

cases this cutoff is set at 75:25 or 80:20 (5). Thus, 

XCIP is relatively insensitive and clonal dominance 

must reach 75–80 % in order to be detectable. 

The methodology to detect XCIP has progressed 

and many polymorphisms in X-chromosomal 

genes have been described that allow finding 

informative markers in most female patients (6). 

Some differences exist between assays that me-

asure methylation of female X-chromosomes 

at the DNA level and methods that rely on the 

expression of mRNA from genes located on the 

X-chromosome. The latter methodology is pre-

ferable and yields more reliable results (7). Using 

XCIP it has been demonstrated that PV and prima-

ry myelofibrosis (PMF) are invariantly clonal, while 

a subgroup of ET patients has been reported to 

display polyclonal hematopoiesis (8, 9).

Cytogenetic analysis provided additional 

tools for studying clonal hematopoiesis in MPN. 

However, only 10–15 % of PV patients have ab-

normal karyotype at diagnosis and the most 

common abnormalities include trisomies (+8, 

+9, +1), and deletions on chromosome 20q 

(del20q) (10–12). More recently, microarray ana-

lysis of single nucleotide polymorphisms (SNPs) 

and copy number variation have yielded deeper 

insights into the molecular pathogenesis of MPN 

and have helped identifying new genes muta-

ted in MPN (13–15).

From today’s perspective, the term “poly-

clonal ET”, which was established based on XCIP 

studies can be deceptive and has caused con-

siderable confusion in the field. It is important 

to realize that the absence of clonality by XCIP 

simply indicates that there is no clone that has 

expanded and reached 75–80 % of the cells that 

were analyzed. However, due to the low sensi-

tivity of XCIP, the presence of clones that have 

not yet reached clonal dominance cannot be 

excluded. Indeed, today we have an increasing 

number of somatic mutations that can be used 

as markers to identify clones within a mixture of 

hematopoietic cells (16). The JAK2V617F mutation 

activates the tyrosine kinase domain of JAK2 
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Postižení kmenových buněk u myeloproliferativních neoplázií

Myeloproliferativní neoplázie (MPN) jsou klonální poruchy, které vznikají na úrovni hematopoetických kmenových buněk. Somatické 

mutace, jako např. JAK2V617F, lze nalézt u purifikovaných hematopoetických kmenových buněk a jejich potomstva. Nicméně je možné 
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jsou zasažené. Ne všichni pacienti s MPN vykazují přítomnost klonálních markerů u B lymfocytů a T buňky jsou téměř vždy vyloučeny. 

U mnoha pacientů s MPN je možné objevit více než jednu somatickou mutaci a pořadí, v němž se tyto mutace objevují, se může u jed-

notlivých pacientů lišit. Myší modely ukázaly, že MPN může být iniciována JAK2V617F bez přítomnosti dalších mutací. Všechny dosavadní 

myší modely jsou však založeny na polyklonálním onemocnění. Za účelem navržení lepších léčebných postupů a potažmo i vyléčení 

MPN bude důležité pochopit časné kroky při iniciaci choroby.
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and constitutes the phenotypic driver mutati-

on in MPN (17–20). Due to its high prevalence, 

it also represents a very useful and sensitive 

clonality marker in MPN. Quantitative analysis 

of JAK2V617F by real-time PCR has revealed that 

ET patients have a significantly lower mutant 

allele burden than PV or PMF patients and in 

many ET patients the JAK2V617F allele burden is 

below 20 % (21). Thus, the statement that some 

ET patients display polyclonal hematopoiesis 

may be true from the perspective of using XCIP 

to detect clonality, but patients with “polyclo-

nal ET” can nevertheless have a subset of up to 

50 % of cells that are clonal that escape detecti-

on by XCIP. True polyclonal MPD would imply 

that in creased hematopoiesis is secondary to 

stimulation by a growth factor or an infecti-

ous agent or is inherited through the germline. 

Clonal analyses suggest that JAK2V617F could be 

both an early and late event in MPN disease (13, 

22–26). Interestingly, patients that carry mutati-

on in both JAK2V617F and TET2 genes frequently 

displayed bi-clonal disease (25–27).

Today, it is well established that B cells are 

part of the MPN clone in some but not all MPN 

patients, but T cells are almost never part of 

the MPN clone (28–32). Since only a minority of 

patients with MPN display the JAK2V617F mutation 

in B-cells (32), individual patients could theo-

retically have initiated MPN disease at different 

levels in the progenitor and stem cell hierarchy 

(Figure 1). Transformation at the level of commit-

ted progenitors that obtained stem cell proper-

ties, i. e. self-renewal capacity, by expressing 

“stemmness” genes has been demonstrated in 

acute myeloid leukemia (Figure 1) (33–35), but 

functional studies with HSCs or later progenitors 

that carry the JAK2V617F mutation to determine 

which fraction is that are capable of initiat-

ing MPN have not been performed. However, 

JAK2V617F has not been shown to induce unlim-

ited self-renewal of hematopoietic progenitors 

and JAK2V617F was also shown to be present in 

isolated purified HSCs from all V617F-positive 

MPN patients studied (36). These results are con-

sistent with the conclusions reached from the 

early clonality studies on MPN that were based 

on finding XCIP skewing in B lymphocytes that 

MPN is initiated at the level of multipotent HSCs 

(3). Consistantly, granulocytes form patients with 

a low mutant JAK2V617F allele burden showed 

clonality by XCIP or other clonal markers such 

as del20q, indicating that other clonal events 

can precede the acquisition of JAK2V617F (22). 

The presence of the JAK2V617F mutation appears 

to skew HSCs towards an erythroid cell fate (36). 

More recently, analysis of human primary bone 

marrow cells from MPN patients showed that 

JAK2 mutations do not alter hematopoietic stem 

and progenitor cell compartment size or in vitro 

behavior, but generate expansion of later my-

eloid differentiation compartments (37).

Mouse models of MPN have shown that 

JAK2V617F can lead to MPN with ET, PV or PMF phe-

notypes (38, 39). The earliest models using retroviral 

transduction of mouse bone marrow cells followed 

by transplantation into lethally irradiated mice de-

monstrated that the expression of mouse JAK2V617F 

is sufficient to induce a phenotype resembling PV 

(17, 40–43). These mice showed massive increase 

in hematocrit and hemoglobin concentration and 

a variable degree of neutrophilia. In contrast to 

patients with PV, the platelet numbers in these 

mice remained normal or were even decreased. 

The following years, mouse models using transge-

nic constructs strategies were generated (44–46). 

These mice have a more physiological expression 

of JAK2V617F, as a contrast to the retroviral models, 

which are over-expressing JAK2V617F. The transgenic 

models were able to reproduce all phenotypes 

present in patients: increased red cell values, pla-

telets and neutrophils as well as splenomegaly and 

progression to myelofibrosis (44–46). The latest 

generation of mouse models used knock-in con-

structs of JAK2V617F to have a more physiological 

expression and timing of oncogene activation 

(47–50). These mouse models went further into 

analyzing stem/progenitor effects of JAK2V617F. 

While all these models observed an increase of 

erythroid progenitors, there was a discrepancy 

in the effects observed on stem/progenitor cells. 

Two reports were able to see an increase in early 

myeloid progenitors as well as an increase or trend 

towards an increase of LSK stem/progenitor cells 

(47, 48). In contrast, Li and col leagues observed a re-

duction in stem/progenitor cell numbers as well 

as a reduced competitive potential in competitive 

transplantations (50). The reasons between these 

discrepancies are at present unclear. These mouse 

models have showed that MPN can be initiated 

by JAK2V617F without the presence of additional 

mutations. However all models to date are based 

on polyclonal disease. Thus, the question whether 

a single hematopoietic stem cell carrying JAK2V617F 

as the sole genetic alteration is sufficient to initiate 

MPN has not yet been conclusively answered.

In order to understand the process di-

sease initiation, we need to obtain a comple-

te knowledge of the somatic mutations that 

are present at diagnosis of MPN. Although it 

seems possible that JAK2V617F alone can initi-

ate MPN in some patients, there is increasing 

evidence that mutations in other genes colla-

borate in the early stages of disease evolution 

and in many instances precede the acquisition 

of JAK2V617F.
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