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Introduction
The Philadelphia-chromosome negative 

(Ph’-neg) classic, chronic myeloproliferative 

neo plasms (MPNs) include polycythemia vera 

(PV), essential thrombocythemia (ET) and pri-

mary myelofibrosis (PMF) (1); also included are 

post-polycythemic or post-thrombocythemic 

myelofibrosis (PPV/PET-MF) that originate from 

usually late evolution of a previous PV or ET and 

are substantially indistinguishable from PMF. 

The molecular lesion(s) at the basis of MPNs has 

remained unknown until 2005, when a point 

mutation in exon 14 of Janus kinase 2 gene 

(JAK2V617F) was reported by four groups almost at 

the same time (2–5); additional studies showed 

that the V617F allele is harbored by more than 

95 % of patients with PV and about 60 % of ET 

or PMF (6–13). Other JAK2 mutations were soon 

described in JAK2 exon 12 in some PV patients 

lacking the V617F allele (14), while mutations 

at codon 515 of MPL (15) were discovered in 

3–8 % of patients with ET and PMF (16–19). These 

mutant alleles all result in constitutive activation 

of tyrosine kinase-dependent cellular signaling 

pathways, particularly the JAK-STAT pathway 

(gain-of-function mutations) (20). However, evi-

dence of activation of the JAK/STAT pathway 

is found also in patients with wild-type JAK2 

or MPL, pointing to possibly other unknown 
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Molekulární genetika v diagnostice a prognóze Ph-negativních myeloproliferativních neoplázií
Molekulární genetika u MPN

Chronické myeloproliferativní neoplázie (MPN) představují různorodou skupinu myeloidních neoplázií, jejichž molekulární podstata je cha-

rakterizovaná přítomností mutace JAK2V617F. Po tomto zásadním objevu bylo zjištěno několik dalších mutací, což jen zdůraznilo nečekanou 

molekulární složitost. Ústředním rysem MPN je deregulace dráhy JAK/STAT a i když vzbudila velký zájem vzhledem k možnosti cílené léčby 

inhibitory JAK2, dospělo se k závěru, že ve většině případů, ne-li ve všech, jsou mutace JAK2 sekundární mutační událostí. Další opakující se 

otázkou je postižení genů ovlivňujících epigenetickou kontrolu genové exprese a nově také sestřih (splicing) RNA. Většinu těchto mutací mají 

rovněž pacienti s myelodysplastickými syndromy. Studie zaměřené na složitou klonální hierarchii MPN svědčí o stavu genetické nestability, 

který by mohl být buď získaný, nebo dědičný. V tomto ohledu nám objevení specifického zárodečného haplotypu u JAK2 poskytlo vysvětlení 

jevu „familiárního clusteringu” MPN, přestože se na něm pravděpodobně podílejí i jiné, dosud neznámé haplotypy. Cílem tohoto přehledu 

je shrnout současné poznatky o molekulárních abnormalitách MPN a probrat jejich úlohu v diagnostice a prognóze.
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Table 1. A working functional classification of most common mutations occurring in MPNs

Mutations affecting 

the JAK/STAT 

signaling

Mutations affecting 

epigenetic gene 

regulation

Mutations affecting the 

splicing machinery

Mutations preferentially 

associated with leukemic 

transformation

JAK2V617F

JAK2 exon 12

MPL

LNK

C-CBL

SOCS1-3

TET2

EZH2

ASXL1

IDH1/2

DNMT3A

Members of the PCR2

JAK2V617F

SF3B1

SRSF2

IDH1/2

IKZF

TP53

NF1

RUNX1

NRAS

KRAS

DNMT3A
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mutations insisting on the same pathway. More 

recently, the spectrum of MPN-associated muta-

tions expanded to include several others genes 

such as genes involved in epigenetic gene 

regulation and RNA splicing machinery (Table 

1). Many of these abnormalities are shared by 

other myeloid malignances, including myelo-

dysplastic syndromes (MDS), myelodysplastic/

myeloproliferative neoplasms (MDS/MPN) and 

acute myeloid leukemias.

As a whole, these information have signifi-

cantly advanced our understanding of the pa-

thophysiology of MPNs, although their intrinsic 

complexity is still far from being entirely under-

stood within an unitary biomolecular picture. 

However, mutation discoveries have been in-

strumental for prompting a modification of es-

tablished diagnostic criteria that finally resulted 

in the 2008 revised WHO classification (21, 22), 

and stimulated intensive research to understand 

how they could impact on disease phenotype 

and prognosis. Finally, the understanding of 

a direct or indirect dysregulation of the JAK/

STAT signaling pathway as a central theme of 

MPN pathogenesis and phenotype put the basis 

for the development and clinical exploitation of 

JAK2 inhibitors, resulting in one of these small 

molecules, Ruxolitinib, as becoming the first 

drug ever approved for the treatment of myelo-

fibrosis (23, 24). In this short review we will focus 

on the most common genetic abnormalities 

reported in MPNs, their impact on diagnosis 

and their use as prognostic biomarkers; a brief 

discussion of genetic predisposition haplotype 

is also included.

Mutation abnormalities in MPNs
The number of mutations that are being 

discovered in MPNs is steadily increasing (25, 26). 

As a working approach, those mutations could 

be categorized as the most typically MPN-

associated mutations involving genes of the 

JAK/STAT pathway, mutations in genes regula-

ting gene expression at the epigenetic level, the 

last discovered mutations in the spliceosome 

machinery, and finally mutations that have been 

mostly, but not exclusively, associated with leu-

kemic transformation (Table 1).

The JAK2V617F mutation, due to a G–>T change 

in exon 14 is located in the JH2 pseudokinase 

domain; it is detected in greater than 95 % of 

PV and about 60 % of ET and PMF. Mutations in 

JAK2 exon 12, found in rare patients with a WHO-

based diagnosis of PV who lack the JAK2V617F 

mutation and in some cases of “idiopathic 

erythrocytosis”, are heterogenous and present 

as complex insertion/deletions in a short region 

between the SH2 and JH2 domain (27). Both 

mutation abnormalities result in a constitutive 

activation of the phosphorylase activity of JAK2 

due to the relief of inhibition exerted by the JH2 

domain on the catalytically active JH1 domain. 

Other mutations that affect the JAK signaling 

involve LNK (28), that encodes for a member of 

a family of adaptor proteins involved in the neg-

ative regulation of JAK/STAT signaling. Mutations 

in LNK have recently been reported in patients 

with JAK2-negative MPN (28) including subjects 

with erythrocytosis (29), with apparently high-

er rate after blastic transformation (30). CBL is 

a protein that controls tyrosine kinase signaling 

both by serving as an adaptor recruiting other 

signaling components and controlling protein 

ubiquitinilation. Missense mutations at CBL exon 

8 and 9 have been reported in approximately 

10 % of PMF patients while they are very rare in 

PV and ET (31).

Among epigenetic genes, abnormalities of 

TET2, EZH2 and ASXL1 are the best character-

ized in MPNs. TET2 (Ten-Eleven-Translocation-2) 

is located on 4q24 and contains 11 exons; other 

members of the family are TET1 and TET3. 

Known function of TET proteins is to accom-

plish 5-methylcytosine hydroxylation resulting 

in the generation of 5-hydroxymethylcytosine 

(hmC); hmC has been found enriched in ac-

tively transcribed genes and in the promot-

ers of polycomb-repressed elements that are 

normally activated during development of 

embryonic stem cells (32). TET2 mutations are 

found in myeloid malignancies (33) including 

classic MPNs (approximately 14 %), mastocy-

tosis, MDS, chronic myelomonocytic leukemia 

(50 %) and in post-MPN or de-novo AML. TET2 

mutations may precede or follow JAK2V617F mu-

tation (33, 34) or occur at the time of disease 

transformation to AML (35). Mutations are scat-

tered over the gene and consist of small inser-

tions, deletions and nonsense mutations, all 

resulting in a loss-of-function of the protein, 

and missense mutations affecting conserved 

amino acids in catalytically active regions. TET2 

alterations are most commonly heterozygous, 

suggesting that TET2 haploinsufficiency may 

be a mechanism sufficient for transformation. 

EZH2, located on 7q36.1, encodes for the PcG 

Enhancer of Zeste Homolog 2, the catalytic com-

ponent of the polycomb repressive complex 2 

(PRC2) that methylates histone H3 at lysine 27 

(H3K27me3), a marker of inactive chromatin. 

Macro- and micro-deletions of the genomic 

region containing EZH2 have been found in 

about 10 % of MDS, with a few subjects pre-

senting loss-of-heterozygosity due to acquired 

uniparental disomy (36, 37). Mutations of EZH2 

have been reported in patients with PMF, MDS, 

MDS/MPN (36–38); they are scattered through-

out the gene and include missense, nonsense 

and premature stop codons resulting in loss of 

function. Both monoallelic and biallelic muta-

tions were described. ASXL1 at chr 20q11.21 en-

codes the Additional SeX combs–Like protein-1, 

which is one of the 3 mammalian homologs of 

Drosophila Additional Sex Comb (Asx) gene. 

ASXL1 consists of 12 exons; frameshift mutations, 

nonsense mutations, and large 20q11 deletions 

of ASXL1 have been described in 10–15 % of 

MPNs and MDSs, 40 % of CMML (particularly in 

the myeloproliferative subset, 60 %), in refractory 

anemia with ring sideroblasts and thrombocy-

tosis, a few patients with chronic myelogenous 

leukemia and 15–20 % of acute leukemias (39). 

Among MPNs they are found mainly in patients 

with myelofibrosis, with frequency ranging from 

5 % to 20 % depending on the series (40–42). 

Most ASXL1 mutations are found in exon 12, 

spanning the region from Tyr591 to Cys1519, and 

disrupt the protein downstream of the ASXH 

domain with loss of the PHD domain.

Recently, mutations in genes of the spliceo-

some machinery, including SF3B1, SRSF2, U2AF1 

have been reported in MDS patients as well as 

in MPNs (43–45), particularly in myelofibrosis

(46). Patients with acute leukemia developed 

from a previous MPN have been reported to 

present a high rate of mutations in SRSF2 (ap-

proximately 19 %) (47).

The rate of leukemic transformation in MPN 

patients is highest among those with myelofi-

brosis. Mutations in FLT3, NRAS (48), NPM1 (49), 

RUNX1 (50), DNMT3A (51), IDH1, IDH2 (52), TET2 

(33, 53) and TP53 (54) have been all implicated 

in leukemic transformation, as well as several 

chromosomal aberrations, such as deletions of 

IKZF1 (55), JARID2, AEBP2 (56) and amplifications 

of MDM4 (54). However, a definite picture of 

the leukemogenic process is still far from being 

delineated.

Germline predisposition 
haplotypes

The well-known phenomenon of familial 

clustering of MPNs supported the hypothesis 

of a genetic predisposition (57). In 2009, it was 

discovered that the JAK2V617F mutation is acquired 

preferentially on a specific constitutional JAK2 

haplotype, named 46/1 or GGCC; this common, 

very low penetrance predisposition allele is esti-
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mated to account for 50 % of the population risk 

of developing a MPN and has a 3 to 4 odds ratio of 

association with JAK2V617F-mutated MPN (58–60). 

The haplotype is associated also with JAK2 exon 

12-mutated PV (61), JAK2-wild type ET (62) and 

possibly MPLW515-mutated PMF or ET as well 

(63–65); an increased frequency of 46/1 haplo-

type may also be detected in patients with MPN/

associated splanchnic vein thrombosis (66–68). 

However, it is predicted that additional rare, highly 

penetrant predisposing polymorphisms are likely 

to exist. The mechanisms of the association of 

the 46/1 haplotype with MPNs are debated: the 

“hypermutability hypothesis” suggests that the 

46/1 haplotype is genetically more unstable that 

other haplotypes and more prone to acquire 

V617F mutation while according to the “fertile 

ground” hypothesis the 46/1 haplotype would 

be in linkage disequilibrium with other unknown 

genetic variables contributing to the expansion of 

a JAK2V617F mutated clone. This haplotype associ-

ates with Ph’-negative MPNs only (69). Recently, 

another population-based haplotype, the C allele 

of JAK2 rs4495487, has been shown to contrib-

ute significantly to the occurrence of JAK2V617F-

positive and -negative MPNs in the Japanese 

population, in addition to the 46/1 haplotype (70). 

Of particular interest, the 751 Gln/Gln genotype 

in XPD, a gene involved in DNA repair, was found 

to have a strong association with both leukemic 

transformation (Overall Risk, OR: 4.9) as well as the 

development of non-myeloid malignancies (OR: 

4.2) in a cohort of MPN patients (71).

Role of mutation abnormalities 
in the diagnosis of MPNs

The JAK2 and MPL mutations are integral to 

the 2008 WHO classification (21, 22). Mutation 

analysis for JAK2V617F mutation is currently at 

the first level of investigation in patients with 

a suspicion of MPN (Figure 1). Thus, a positivi-

ty establishes with high probability a MPN, but 

the individual subtype should be defined by 

using a combination of other major (PV) and/

or minor (ET and PMF) criteria; a negative test 

for JAK2V617F does not exclude a MPN, including 

PV. In particular, bone marrow biopsy is essential 

to differentiate ET from PMF and the prefibrotic 

myelofibrosis (72) as well as other unusual forms 

of MPN/MDS (73). A cooperative effort within 

the European Leukemia Net has focused on the 

best-standardized conditions for JAK2V617F assay; 

results are expected soon. Assays that have at 

least a 1 % sensitivity are optimal for diagnosis 

while a greater sensitivity (down to 0.01 %) might 

be necessary for assessing residual JAK2V617F positi-

vity after a stem cell transplant (74). False-positive 

are very rare, and in this light one should probably 

interpret the findings of low-levels of JAK2V617F 

in healthy subjects (75); however, this remains 

an open question. Whether a quantitative assay 

should be routinely used is a matter of discus-

sion, but just for diagnostic purposes it should 

probably not. There is a trend towards higher 

V617F allele burden in MF and PV versus ET, with 

median burden levels greater than 50 % in the 

former versus 20 % in ET (76, 77); however, there 

is a wide distribution of levels, thus they are not 

diagnostic of MPN subtype at all. Homozygosity 

for the JAK2V617F mutation, that originates from 

mitotic recombination of the short arm of chro-

mosome 9 (78), is displayed by approximately 

30 % of PV or PMF patients as opposite to 2–4 % 

of ET. However, in the clinical practice, the term 

“homozygosity” is used, somewhat incorrectly, to 

mean an allelic burden greater than 50 % when 

measured in a patient’s blood cell (granulocyte, 

whole blood) samples by quantitative molecular 

assay; as a matter of fact, the MPN clone is variably 

comprised of JAK2V617F heterozygous, homozy-

gous as well as JAK2 wild-type hematopoietic 

progenitors, as demonstrated in single colony 

genotyping experiments (79). Homozygous pro-

genitors are most prevalent in PV and PMF and 

outmost rare in the majority of ET patients (80).

In JAK2V617F negative patients with throm-

bocytosis and/or the suspicion of ET a search 

for mutations of MPL exon 10 (mainly, at codon 

515, much rare at 505) should be considered; 

these involve about 5 % of ET and 10 % of PMF 

patients (16, 18). Finally, in the unusual patients 

with a suspicion of PV who is JAK2V617F negative, 

a search for mutations at exon 12 might be con-

sidered (14), provided the diagnostic suspicion is 

high enough due to low erythropoietin levels, 

confirmed evidence of raised red cell mass and 

eventually findings of erythropoietin-independ-

ent colonies, after having carefully excluded 

reactive and familial forms. These considerations 

derive from the fact that mutation survey for 

JAK2 exon 12 is complex and expensive due to 

the several abnormalities that have been report-

ed to occur (81); furthermore, since the clone size 

may be small in many patients, the sensitivity of 

current assays might not be adequate enough 

to avoid false negative results (82).

A JAK2V617F allele burden exceeding 50 % has 

been reported to occur in about one quarter 

of patients with prefibrotic PMF as compared 

to none of a corresponding series of 90 ET (83). 

Therefore, according to this paper, a JAK2V617F 

allele burden greater than 50 % would favor 

a diagnosis of prefibrotic PMF rather than ET 

(83), but in the absence of controlled studies 

these data should be managed with caution.

Genotypig for the 46/1 haplotype has no 

role in diagnosis of MPNs; in particular, it should 

not be used, notwithstanding it could be soli-

cited by some patient’s, to predict the risk of 

developing an MPN in the relatives.

Prognostic signifi cance of 
mutation abnormalities in MPNs

The possibility that a JAK2V617F mutated allele 

and/or the burden of the mutation influences 

disease manifestation and survival has been the 

objective of several studies which, in most cases, 

have shown that the V617F allele burden corre-

lates with hematologic characteristics and some 

clinical end-points, although it is clear that the 

burden of mutated allele is not the only mecha-

nism at the basis of MPN phenotypic variability.

Figure 1. Molecular-based approach to the diagnosis of MPNs

JAK2V617F genotyping

Mutated Wild-type

PV
suspected

ET / PMF
suspectedPV, ET, PMF

very likely

MPL genotypingJAK2 ex12 genotyping

If mutated

Use additional WHO criteria to dostinguish among unique 

MPNs clinical entities and/or with other infrequent MPNs

Clinical suspicion of an MPN
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Among 323 patients with PV (67.8 % het-

erozygous and 32.2 % homozygous) and 639 

patients with ET (40.2 % wild-type, 57.6 % het-

erozygous, and 2.2 % homozygous) collected 

in a multicentre Italian study (6), homozygosity 

was associated with evidence of a stimulated 

erythropoiesis and myelopoiesis, lower plate-

let count, a higher incidence of splenomegaly, 

larger spleen size, and a greater proportion 

of patients requiring cytoreductive therapy. 

Homozygous PV patients had also a higher in-

cidence of pruritus. The rate of major thrombo-

sis was not increased in homozygous patients 

with PV compared to heterozygous, similar to 

previous findings in smaller series (13). On the 

contrary, thrombotic events were definitively 

more frequent among homozygous ET patients, 

with an hazard ratio 3.97-fold higher than in 

JAK2wild-type, that remained significant after 

multivariate analysis including other established 

risk factors and leukocytosis as covariates (84, 

85). Meta-analyses including more than 2,000 

patients, have confirmed that the mere pres-

ence of a JAK2V617F mutated status is associated 

with a predicted overall risk of about 2 when 

compared to wild-type subjects (86, 87). A mu-

tated allele burden greater than 75 % was as-

sociated with a 3.56-fold higher relative risk of 

total thrombosis in a prospective study in 173 

patients with PV (88); thus, patients with PV in-

cluded within the highest V617F allele burden 

quartile may represent a subgroup at particularly 

higher risk of thrombosis. Furthermore, there is 

evidence that the proportion of PV patients with 

progression to post-PV myelofibrosis resulted 

significantly higher among homozygous than 

heterozygous (6, 13, 89). The risk of having a fi-

brotic transformation was significantly higher 

also among homozygous ET patients (14.3 % of 

homozygous vs. 4.7 % of heterozygous vs. 1.6 % 

of wild-type patients P < 0.001) in the Italian 

study (6). As a whole, these data indicate that 

the burden of JAK2V617F allele is associated with 

the magnitude of myeloproliferation, clinical 

manifestations, the risk of thrombosis in ET and 

possibly PV, and with the probability to evolve to 

myelofibrosis, therefore representing a negative 

prognostic factor for disease severity.

In the case of primary myelofibrosis, a sta-

tistically significant association of the JAK2V617F 

mutated status with a more pronounced my-

eloproliferative phenotype was found in some 

studies (8, 9, 90), at variance with others (10, 11). 

A study conducted in England (90) reported 

a hazard ratio of shortened survival of 3.3 (95 % 

confidence interval, 1.26–8.68) in patients har-

boring the V617F allele; these results were not 

confirmed in other series. However, Tefferi et al. 

(10) first described a poorer survival in patients 

harboring a low (ie, within the first quartile) mu-

tated allele burden, and those findings were 

confirmed by Guglielmelli et al. (9). In the latter 

study patients included in the lower quartile 

had significantly shorter progression time to 

anemia, leukopenia, and a longer time to large 

splenomegaly compared to patients in the up-

per quartiles; furthermore, patients in the lower 

quartile had a significantly reduced overall sur-

vival compared both to upper quartiles and 

JAK2 wild-type patients. On the other hand, 

neither a mutated JAK2V617F status nor the mu-

tated allele burden appeared to have prognostic 

relevance in a study of 65 patients with post-PV 

or PET-MF (91). In summary, a low JAK2V617F al-

lele burden at diagnosis seems to be a strong 

surrogate marker associated with shortened 

survival in PMF, possibly because it points to the 

prevalence of another clone harbouring more 

detrimental mutations.

It is debated whether a nullizygous status 

(i. e., the absence of) for the 46/1 haplotype has 

a negative prognostic role in PMF (92, 93).

Other mutated genotypes, including 

MPLW515L/K (19, 94), CBL (31), TET2 (33), ASXL1 

(40), LNK (28, 30), IDH1/IDH2 (95) have not 

been shown to be prognostically informative, 

although most patient series analyzed to date 

were too small to allow reliable statistical analy-

ses (53). On the other hand, we found that EZH2 

mutational status had a significant negative im-

pact on disease outcome among PMF patients. 

EZH2 mutated subjects preferentially clustered 

in the IPSS high-risk category and presented 

shortened overall survival and leukemia-free sur-

vival compared to their wild-type counterparts; 

of importance, EZH2 mutated status maintained 

a negative prognostic significance in a multiva-

riate analysis together with the IPPS score and 

a low JAK2V617F allele burden.

Conclusions
Due to their strong, though not exclusive, 

association with MPNs and their frequency, fin-

ding a mutation in JAK2, both the V617F and 

exon 12 mutations, or in MPL represents a very 

useful criterion for supporting the diagnosis of 

MPNs; these molecular abnormalities have been 

incorporated as major criterion in the revised 

2008 WHO classification, and they are currently 

assayed in most reference hematology labora-

tories. Other criteria are necessary, however, to 

distinguish among the different clinical entities, 

although JAK2 exon 12 mutations are associated 

typically with PV and MPL mutations with ET 

and PMF. Support to the prognostic role of JAK2 

mutation and its allelic burden for thrombosis in 

PV and ET and progression to PPV/PET MF has 

been substantiated by several studies, while 

its role in disease progression and survival in 

PMF is still debated. On the other hand, other 

mutations have little diagnostic impact, owing 

to both their low specificity and frequency, but 

they might deserve a stronger prognostic role, 

as shown for EZH2 in PMF and p53 alterations at 

the time of leukemic transformation. On these 

premise, we can expect a progressively greater 

and meaningful impact of molecular diagnostics 

in MPNs over the next years.
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