Onkologie – 1/2023

ONKOLOGIE / Onkologie. 2023;17(1):51-56 / www.onkologiecs.cz 56 PŘEHLEDOVÉ ČLÁNKY Mechanismy rezistence na imunoterapii melanomu 4. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. N Engl J Med. 2011;364(26):2517-2526. doi:10.1056/ NEJMoa1104621. 5. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535-1546. doi:10.1056/ NEJMoa1910836. 6. Robert C, Long G V., Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320-330. doi:10.1056/NEJMoa1412082. 7. Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390(10105):1853-1862. doi:10.1016/S0140-6736(17)31601-X. 8. Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(11):1480-1492. doi:10.1016/S1470-2045(18)30700-9. 9. Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930-2940. doi:10.1172/JCI91190. 10. Hugo W, Zaretsky JM, Sun L, et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell. 2016;165(1):35-44. doi:10.1016/j.cell.2016.02.065. 11. Vilain RE, Menzies AM, Wilmott JS, et al. Dynamic changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in Melanoma. Clin Cancer Res. 2017;23(17):5024-5033. doi:10.1158/1078-0432.CCR-16-0698. 12. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189-2199. doi:10.1056/NEJMoa1406498. 13. Jiang T, Shi T, Zhang H, et al. Tumor neoantigens: From basic research to clinical applications. J Hematol Oncol. 2019;12(1). doi:10.1186/s13045-019-0787-5. 14. Jäger E, Ringhoffer M, Altmannsberger M, et al. Immunoselection in vivo: Independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer. 1997;71(2):142-147. doi:10.1002/(SICI)- 1097-0215(19970410)71:2<142::AID-IJC3>3.0.CO;2-0. 15. McGranahan N, Furness AJS, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune check-point blockade. Science (80-). 2016;351(6280):1463-1469. doi:10.1126/science.aaf1490. 16. Gros A, Parkhurst MR, Tran E, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016;22(4):433-438. doi:10.1038/nm.4051. 17. Nowicki TS, Hu-Lieskovan S, Ribas A. Mechanisms of Resistance to PD-1 and PD-L1 Blockade. Cancer J (United States). 2018;24(1):47-53. doi:10.1097/PPO.0000000000000303. 18. Long G V, Larkin J, Ascierto PA, et al. melanoma and other skin tumours 1112PD PD-L1 expression as a biomarker for nivolumab (NIVO) plus ipilimumab (IPI) and NIVO alone in advanced melanoma (MEL): A pooled analysis. Ann Oncol. 2016;27:379-400. doi:10.1093/annonc/mdw379.7. 19. Carlino M, Ribas A, Gonzalez R, et al. Abstract CT004: KEYNOTE-006: PD-L1 expression and efficacy in patients (Pts) treated with pembrolizumab (pembro) vs ipilimumab (IPI) for advanced melanoma. In: American Association for Cancer Research (AACR); 2016:CT004-CT004. doi:10.1158/1538-7445.am2016-ct004. 20. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373(1):23-34. doi:10.1056/ NEJMoa1504030. 21. Parsa AT, Waldron JS, Panner A, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13(1):84-88. doi:10.1038/nm1517. 22. Peng W, Qing Chen J, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy Analysis and interpretation of data (statistical analysis and bioinformatic analysis): HHS Public Access. Cancer Discov. 2016;6(2):202-216. doi:10.1158/2159-8290.CD-15-0283. 23. Ni K, O’Neill H. The role of dendritic cells in T cell activation. Immunol Cell Biol. 1997;75(3):223-230. doi:10.1038/icb.1997.35. 24. Wu W, Wang W, Wang Y, et al. IL-37b suppresses T cell priming by modulating dendritic cell maturation and cytokine production via dampening ERK/NF-κB/S6K signalings. Acta Biochim Biophys Sin (Shanghai). 2015;47(8):597-603. doi:10.1093/abbs/gmv058. 25. Lindenberg JJ, van de Ven R, Lougheed SM, et al. Functional characterization of a STAT3-dependent dendritic cell-derived CD14 + cell population arising upon IL-10-driven maturation . Oncoimmunology. 2013;2(4):e23837. doi:10.4161/onci.23837. 26. Emeagi PU, Maenhout S, Dang N, et al. Downregulation of Stat3 in melanoma: Reprogramming the immune microenvironment as an anticancer therapeutic strategy. Gene Ther. 2013;20(11):1085-1092. doi:10.1038/gt.2013.35. 27. Hong M, Puaux AL, Huang C, et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res. 2011;71(22):6997-7009. doi:10.1158/0008-5472.CAN-11-1466. 28. Harlin H, Meng Y, Peterson AC, et al. Chemokine expression in melanoma metastases associated with CD8 + T-CeII recruitment. Cancer Res. 2009;69(7):3077-3085. doi:10.1158/0008-5472.CAN-08-2281. 29. Yue C, Shen S, Deng J, et al. STAT3 in CD8+ T cells inhibits their tumor accumulation by downregulating CXCR3/ CXCL10 axis. Cancer Immunol Res. 2015;3(8):864-870. doi:10.1158/2326-6066.CIR-15-0014. 30. Kučera J, Strnadová K, Dvořánková B, et al. Serum proteomic analysis of melanoma patients with immunohistochemical profiling of primary melanomas and cultured cells: Pilot study. Oncol Rep. 2019;42(5):1793-1804. doi:10.3892/ or.2019.7319. 31. Bouzin C, Brouet A, De Vriese J, et al O. Effects of Vascular Endothelial Growth Factor on the Lymphocyte-Endothelium Interactions: Identification of Caveolin-1 and Nitric Oxide as Control Points of Endothelial Cell Anergy. J Immunol. 2007;178(3):1505-1511. doi:10.4049/jimmunol.178.3.1505. 32. Huang H, Langenkamp E, Georganaki M, et al. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-κB-induced endothelial activation. FASEB J. 2015;29(1):227-238. doi:10.1096/fj.14-250985. 33. Chen PL, Roh W, Reuben A, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune check-point blockade. Cancer Discov. 2016;6(8):827-837. doi:10.1158/2159-8290.CD-15-1545. 34. Ott PA, Stephen Hodi F, Buchbinder EI. Inhibition of immune check-points and vascular endothelial growth factor as combination therapy for metastatic melanoma: An overview of rationale, preclinical evidence, and initial clinical data. Front Oncol. 2015;5(SEP). doi:10.3389/fonc.2015.00202. 35. Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16(2):121-126. doi:10.1038/nrc.2016.2. 36. Restifo NP, Marincola FM, Kawakami Y, et al. Loss of functional beta2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996;88(2):100-108. doi:10.1093/jnci/88.2.100. 37. Del Campo AB, Kyte JA, Carretero J, et al. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer. 2014;134(1):102-113. doi:10.1002/ijc.28338. 38. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819-829. doi:10.1056/NEJMoa1604958. 39. Jin W. Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial–Mesenchymal Transition. Cells. 2020;9(1):217. doi:10.3390/cells9010217. 40. Karachaliou N, Gonzalez-Cao M, Crespo G, et al. Interferon gamma, an important marker of response to immune check-point blockade in non-small cell lung cancer and melanoma patients. Ther Adv Med Oncol. 2018;10. doi:10.1177/1758834017749748. 41. Kim TK, Herbst RS, Chen L. Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends Immunol. 2018;39(8):624-631. doi:10.1016/j.it.2018.05.001. 42. Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune check-points. Nat Commun. 2016;7. doi:10.1038/ncomms10501. 43. Taube JM, Young GD, McMiller TL, et al. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: Implications for PD-1 pathway blockade. Clin Cancer Res. 2015;21(17):3969-3976. doi:10.1158/10780432.CCR-15-0244. 44. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science (80- ). 2015;350(6264):1079-1084. doi:10.1126/science.aad1329. 45. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD- -L1 efficacy. Science. 2015;350(6264):1084-1089. doi:10.1126/ science.aac4255. 46. Shaikh FY, Gills JJ, Sears CL. Impact of the microbiome on check-point inhibitor treatment in patients with non-small cell lung cancer and melanoma. EBioMedicine. 2019;48:642647. doi:10.1016/j.ebiom.2019.08.076. 47. McQuade JL, Ologun GO, Arora R, Wargo JA. Gut Microbiome Modulation Via Fecal Microbiota Transplant to Augment Immunotherapy in Patients with Melanoma or Other Cancers. Curr Oncol Rep. 2020;22(7). doi:10.1007/s11912020-00913-y. 48. Yang M, Wang Y, Yuan M, et al. Antibiotic administration shortly before or after immunotherapy initiation is correlated with poor prognosis in solid cancer patients: An up-to-date systematic review and meta-analysis. Int Immunopharmacol. 2020;88. doi:10.1016/j.intimp.2020.106876. 49. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science (80- ). 2018;359(6371):97-103. doi:10.1126/science.aan4236. 50. Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368-1379. doi:10.1093/annonc/mdx108. 51. Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science (80- ). 2018;359(6371):104-108. doi:10.1126/science.aao3290. 52. Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(7741):600-605. doi:10.1038/s41586-019-0878-z. 53. Hegazy AN, West NR, Stubbington MJT, et al. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation. Gastroenterology. 2017;153(5):1320-1337.e16. doi:10.1053/j.gastro.2017.07.047. 54. Frankel AE, Coughlin LA, Kim J, et al. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Check-point Therapy Efficacy in Melanoma Patients. Neoplasia (United States). 2017;19(10):848-855. doi:10.1016/j.neo.2017.08.004. 55. Ralli M, Botticelli A, Visconti IC, et al. Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J Immunol Res. 2020;2020. doi:10.1155/2020/9235638. 56. Kitano S, Nakayama T, Yamashita M. Biomarkers for Immune Check-point Inhibitors in Melanoma. Front Oncol. 2018;8(July):1-8. doi:10.3389/fonc.2018.00270.

RkJQdWJsaXNoZXIy NDA4Mjc=