Onkologie. 2025:19(5):299-304 | DOI: 10.36290/xon.2025.054

The role of T-lymphocyte subpopulations in the pathogenesis and treatment of B-cell non-Hodgkin lymphomas

Tereza Shokralla, Martin ©paček
I. interní klinika - klinika hematologie VFN v Praze a 1. LF UK, Praha

Research in the field of B-cell non-Hodgkin lymphomas (B-NHL) has in recent years shifted focus toward the significance of the tumor microenvironment (TME). The complex interactions between malignant lymphocytes, stromal cells (such as tumor-associated fibroblasts and macrophages), and T-lymphocytes represent key determinants of tumor biology and the clinical course of the disease. The T-lymphocyte compartment, an important and highly heterogeneous component of the lymphoma microenvironment, includes a variety of functionally and phenotypically distinct T-cell subpopulations. Their quantitative and qualitative representation, interactions, and dynamics differ among various lymphoma types, and their precise impact on disease development remains insufficiently characterized in many cases. This article aims to summarize current knowledge about individual T-lymphocyte subpopulations and their role in the pathogenesis of selected B-NHL, while also highlighting their potential contribution to diagnosis, risk stratification, and therapy.

Keywords: tumor microenvironment, B-cell non-Hodgkin lymphoma, T-lymphocytes, T-cell subpopulations.

Accepted: November 25, 2025; Published: December 15, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Shokralla T, ©paček M. The role of T-lymphocyte subpopulations in the pathogenesis and treatment of B-cell non-Hodgkin lymphomas. Onkologie. 2025;19(5):299-304. doi: 10.36290/xon.2025.054.
Download citation

References

  1. Mousset CM, Hobo W, Woestenenk R, et al. Comprehensive phenotyping of T cells using flow cytometry. Cytometry A. 2019;95(6):647-654. doi:10.1002/cyto.a.23724. Go to original source... Go to PubMed...
  2. Heming M, Haessner S, Wolbert J, et al. Intratumor heterogeneity and T cell exhaustion in primary CNS lymphoma. Genome Med. 2022;14(1):109. doi:10.1186/s13073-022-01110-1. Go to original source... Go to PubMed...
  3. Masopust D, Soerens AG. Tissue-resident T cells and other resident leukocytes. Annu Rev Immunol. 2019;37:521-546. doi:10.1146/annurev-immunol-042617-053214. Go to original source... Go to PubMed...
  4. Gattinoni L, Lugli E, Ji Y, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290-1297. doi:10.1038/nm.2446. Go to original source... Go to PubMed...
  5. Baessler A, Vignali DAA. T cell exhaustion. Annu Rev Immunol. 2024;42(1):179-206. doi:10.1146/annurev-immunol-090222-110914. Go to original source... Go to PubMed...
  6. Sorrenti V, Marenda B, Fortinguerra S, et al. Immunophenotyping of Th1 CD195+, Th2 CD194+, Th17 CD161+, Th-reg, Tc-reg, Tc-CD57+, TDN (CD4-CD8-) and B1-lymphocytes in an outpatient population in Northeast Italy. Clin Immunol. 2016.
  7. Khokhar M, Purohit P. The emerging role of T helper 9 (Th9) cells in immunopathophysiology: a comprehensive review of their effects and responsiveness in various disease states. Int Rev Immunol. 2024;43(6):341-360. doi:10.1080/08830185.2024.2364586. Go to original source... Go to PubMed...
  8. Kumar S, Dhamija B, Marathe S, et al. The Th9 axis reduces the oxidative stress and promotes the survival of malignant T cells in cutaneous T-cell lymphoma patients. Mol Cancer Res. 2020;18(4):657-668. doi:10.1158/1541-7786.MCR-19-0894. Go to original source... Go to PubMed...
  9. Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev. 2008;223:87-113. doi:10.1111/j.1600-065X.2008.00628.x. Go to original source... Go to PubMed...
  10. Alizadeh D, Katsanis E, Larmonier N. The multifaceted role of Th17 lymphocytes and their associated cytokines in cancer. Clin Dev Immunol. 2013;2013:957878. doi:10.1155/2013/957878. Go to original source... Go to PubMed...
  11. Kim BS, Kuen DS, Koh CH, et al. Type 17 immunity promotes the exhaustion of CD8+ T cells in cancer. J Immunother Cancer. 2021;9(6):e002603. doi:10.1136/jitc-2021-002603. Go to original source... Go to PubMed...
  12. Lad DP, Varma S, Varma N, et al. Regulatory T-cell and T-helper 17 balance in chronic lymphocytic leukemia progression and autoimmune cytopenias. Leuk Lymphoma. 2015;56(8):2424-2428. doi:10.3109/10428194.2014.986479. Go to original source... Go to PubMed...
  13. Gamal W, Sahakian E, Pinilla-Ibarz J. The role of Th17 cells in chronic lymphocytic leukemia: friend or foe? Blood Adv. 2023;7(11):2401-2417. doi:10.1182/bloodadvances.2022008985. Go to original source... Go to PubMed...
  14. Doulabi H, Masoumi E, Rastin M, et al. The role of Th22 cells, from tissue repair to cancer progression. Cytokine. 2022;149:155749. doi:10.1016/j.cyto.2021.155749. Go to original source... Go to PubMed...
  15. Lu T, Liu Y, Yu S, et al. Increased frequency of circulating Th22 cells in patients with B-cell non-Hodgkin's lymphoma. Oncotarget. 2016;7(35):56574-56583. doi:10.18632/oncotarget.10966. Go to original source... Go to PubMed...
  16. Wang M, Chen P, Jia Y, et al. Elevated Th22 as well as Th17 cells associated with therapeutic outcome and clinical stage are potential targets in patients with multiple myeloma. Oncotarget. 2015;6(20):17958-17967. doi:10.18632/oncotarget.4641. Go to original source... Go to PubMed...
  17. Arjomandnejad M, Kopec AL, Keeler AM. CAR-T regulatory (CAR-Treg) cells: engineering and applications. Biomedicines. 2022;10(2):287. doi:10.3390/biomedicines10020287. Go to original source... Go to PubMed...
  18. Wu X, Fajardo-Despaigne JE, Zhang C, et al. Altered T follicular helper cell subsets and function in chronic lymphocytic leukemia. Front Oncol. 2021;11:674492. doi:10.3389/fonc.2021.674492. Go to original source... Go to PubMed...
  19. Qiu L, Zhou Y, Yu Q, et al. Elevated levels of follicular T helper cells and their association with therapeutic effects in patients with chronic lymphocytic leukemia. Immunol Lett. 2018;197:15-28. doi:10.1016/j.imlet.2018.03.002. Go to original source... Go to PubMed...
  20. Ma X, Zha J, He J, et al. T follicular helper cell-mediated IL-21 production suppresses FOXP3 expression of T follicular regulatory-like cells in diffuse large B cell lymphoma patients. Hum Immunol. 2020;81(8):452-459. doi:10.1016/j.humimm.2020.05.008. Go to original source... Go to PubMed...
  21. Moreno Ayala MA, Gottardo MF, Imsen M, et al. Therapeutic blockade of Foxp3 in experimental breast cancer models. Breast Cancer Res Treat. 2017;166(2):393-405. doi:10.1007/s10549-017-4414-2. Go to original source... Go to PubMed...
  22. Wang J, Ke XY. The four types of Tregs in malignant lymphomas. J Hematol Oncol. 2011;4:50. doi:10.1186/1756-8722-4-50. Go to original source... Go to PubMed...
  23. Mittrücker HW, Visekruna A, Huber M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch Immunol Ther Exp (Warsz). 2014;62(6):449-458. doi:10.1007/s00005-014-0293-y. Go to original source... Go to PubMed...
  24. Lu Y, Wang Q, Yi Q. Anticancer Tc9 cells: Long-lived tumor-killing T cells for adoptive therapy. OncoImmunology. 2014;3:e28542. doi:10.4161/onci.28542. Go to original source... Go to PubMed...
  25. Liang Y, Pan HF, Ye DQ. Tc17 cells in immunity and systemic autoimmunity. Int Rev Immunol. 2015;34(4):318-331. doi:10.3109/08830185.2014.954698. Go to original source... Go to PubMed...
  26. Lückel C, Picard FSR, Huber M. Tc17 biology and function: novel concepts. Eur J Immunol. 2020;50(9):1257-1267. doi:10.1002/eji.202048627. Go to original source... Go to PubMed...
  27. Godfrey DI, Koay HF, McCluskey J, et al. The biology and functional importance of MAIT cells. Nat Immunol. 2019;20(9):1110-1128. doi:10.1038/s41590-019-0444-8. Go to original source... Go to PubMed...
  28. Konduri V, Oyewole-Said D, Vazquez-Perez J, et al. CD8+CD161+ T-cells: cytotoxic memory cells with high therapeutic potential. Front Immunol. 2021;11:613204. doi:10.3389/fimmu.2020.613204. Go to original source... Go to PubMed...
  29. Cerchietti L. Genetic mechanisms underlying tumor microenvironment composition and function in diffuse large B-cell lymphoma. Blood. 2024;143(12):1101-1111. doi:10.1182/blood.2023021002. Go to original source... Go to PubMed...
  30. Lin H, Sun XF, Zhen ZJ, et al. Correlation between peripheral blood CD4+CD25high CD127low regulatory T cell and clinical characteristics of patients with non-Hodgkin's lymphoma. Ai Zheng. 2009;28(11):1186-1192. doi:10.5732/cjc.009.10180. Go to original source... Go to PubMed...
  31. Pollari M, Pellinen T, Karjalainen-Lindsberg ML, et al. Adverse prognostic impact of regulatory T-cells in testicular diffuse large B-cell lymphoma. Eur J Haematol. 2020;105(6):712-721. doi:10.1111/ejh.13484. Go to original source... Go to PubMed...
  32. Dehghani M, Kalani M, Golmoghaddam H, et al. Aberrant peripheral blood CD4+ CD25+ FOXP3+ regulatory T cells/T helper-17 number is associated with the outcome of patients with lymphoma. Cancer Immunol Immunother. 2020;69(9):1917-1928. doi:10.1007/s00262-020-02591-y. Go to original source... Go to PubMed...
  33. Xu T, Chai J, Wang K, et al. Tumor immune microenvironment components and checkpoint molecules in anaplastic variant of diffuse large B-cell lymphoma. Front Oncol. 2021;11:638154. doi:10.3389/fonc.2021.638154. Go to original source... Go to PubMed...
  34. Zhong W, Xu X, Zhu Z, et al. Increased interleukin-17A levels promote rituximab resistance by suppressing p53 expression and predict an unfavorable prognosis in patients with diffuse large B cell lymphoma. Int J Oncol. 2018;52(5):1528-1538. doi:10.3892/ijo.2018.4299. Go to original source... Go to PubMed...
  35. Sun R, Zheng Z, Wang L, et al. A novel prognostic model based on four circulating miRNA in diffuse large B-cell lymphoma: implications for the roles of MDSC and Th17 cells in lymphoma progression. Mol Oncol. 2021;15(1):246-261. doi:10.1002/1878-0261.12834. Go to original source... Go to PubMed...
  36. Sun R, Zhang PP, Weng XQ, et al. Therapeutic targeting miR130b counteracts diffuse large B-cell lymphoma progression via OX40/OX40L-mediated interaction with Th17 cells. Signal Transduct Target Ther. 2022;7(1):80. doi:10.1038/s41392-022-00895-2. Go to original source... Go to PubMed...
  37. Zhong W, Xu X, Zhu Z, et al. Increased expression of IRF8 in tumor cells inhibits the generation of Th17 cells and predicts unfavorable survival of diffuse large B cell lymphoma patients. Oncotarget. 2017;8(30):49757-49772. doi:10.18632/oncotarget.17693. Go to original source... Go to PubMed...
  38. Arima H, Nishikori M, Otsuka Y, et al. B cells with aberrant activation of Notch1 signaling promote Treg and Th2 cell-dominant T-cell responses via IL-33. Blood Adv. 2018;2(18):2282-2295. doi:10.1182/bloodadvances.2018019919. Go to original source... Go to PubMed...
  39. Mori T, Takada R, Watanabe R, et al. T-helper (Th)1/Th2 imbalance in patients with previously untreated B-cell diffuse large cell lymphoma. Cancer Immunol Immunother. 2001;50(10):566-568. doi:10.1007/s00262-001-0232-8. Go to original source... Go to PubMed...
  40. Autio M, Leivonen SK, Brück O, et al. Immune cell constitution in the tumor microenvironment predicts the outcome in diffuse large B-cell lymphoma. Haematologica. 2021;106(3):718-729. doi:10.3324/haematol.2019.243626. Go to original source... Go to PubMed...
  41. Hoferkova E, Seda V, Kadakova S, et al. Stromal cells engineered to express T cell factors induce robust CLL cell proliferation in vitro and in PDX co-transplantations allowing the identification of RAF inhibitors as anti-proliferative drugs. Leukemia. 2024;38(8):1699-1711. doi:10.1038/s41375-024-02284-w. Go to original source... Go to PubMed...
  42. Le Saos-Patrinos C, Loizon S, Zouine A, et al. Elevated levels of circulatory follicular T helper cells in chronic lymphocytic leukemia contribute to B cell expansion. J Leukoc Biol. 2023;113(3):305-314. doi:10.1093/jleuko/qiad006. Go to original source... Go to PubMed...
  43. Zhang R, Guo S, Qu J. Exploring the prognostic value of T follicular helper cell levels in chronic lymphocytic leukemia. Sci Rep. 2024;14(1):22443. doi:10.1038/s41598-024-73325-8. Go to original source... Go to PubMed...
  44. Lad DP, Varma S, Varma N, et al. Regulatory T-cells in B-cell chronic lymphocytic leukemia: their role in disease progression and autoimmune cytopenias. Leuk Lymphoma. 2012;54(5):1012-1019. doi:10.3109/10428194.2012.728287. Go to original source... Go to PubMed...
  45. Pang N, Alimu X, Chen R, et al. Activated Galectin-9/Tim3 promotes Treg and suppresses Th1 effector function in chronic lymphocytic leukemia. FASEB J. 2021;35(7):e21556. doi:10.1096/fj.202100013R. Go to original source... Go to PubMed...
  46. Dasgupta A, Mahapatra M, Saxena R. A study for proposal of use of regulatory T cells as a prognostic marker and establishing an optimal threshold level for their expression in chronic lymphocytic leukemia. Leuk Lymphoma. 2014;56(6):1831-1838. doi:10.3109/10428194.2014.966245. Go to original source... Go to PubMed...
  47. Goral A, Firczuk M, Fidyt K, et al. A specific CD44lo CD25lo subpopulation of regulatory T cells inhibits anti-leukemic immune response and promotes the progression in a mouse model of chronic lymphocytic leukemia. Front Immunol. 2022;13:781364. doi:10.3389/fimmu.2022.781364. Go to original source... Go to PubMed...
  48. Jitschin R, Braun M, Büttner M, et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood. 2014;124(5):750-760. doi:10.1182/blood-2013-12-546416. Go to original source... Go to PubMed...
  49. Ferrer G, Jung B, Chiu PY, et al. Myeloid-derived suppressor cell subtypes differentially influence T-cell function, T-helper subset differentiation, and clinical course in CLL. Leukemia. 2021;35(12):3163-3175. doi:10.1038/s41375-021-01249-7. Go to original source... Go to PubMed...
  50. de Weerdt I, Hofland T, Lameris R, et al. Improving CLL Vγ9Vδ2-T-cell fitness for cellular therapy by ex vivo activation and ibrutinib. Blood. 2018;132(21):2260-2272. doi:10.1182/blood-2017-12-822569. Go to original source... Go to PubMed...
  51. Mhibik M, Wiestner A, Sun C. Harnessing the effects of BTKi on T cells for effective immunotherapy against CLL. Int J Mol Sci. 2019;21(1):68. doi:10.3390/ijms21010068. Go to original source... Go to PubMed...
  52. Puzzolo MC, Del Giudice I, Peragine N, et al. TH2/TH1 shift under ibrutinib treatment in chronic lymphocytic leukemia. Front Oncol. 2021;11:637186. doi:10.3389/fonc.2021.637186. Go to original source... Go to PubMed...
  53. de Weerdt I, Hofland T, de Boer R, et al. Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv. 2019;3(17):2642-2652. doi:10.1182/bloodadvances.2019000360. Go to original source... Go to PubMed...
  54. Liu L, Cheng X, Yang H, et al. BCL-2 expression promotes immunosuppression in chronic lymphocytic leukemia by enhancing regulatory T cell differentiation and cytotoxic T cell exhaustion. Mol Cancer. 2022;21(1):59. doi:10.1186/s12943-022-01516-w. Go to original source... Go to PubMed...
  55. Jain P, Nomie K, Kotlov N, et al. Immune-depleted tumor microenvironment is associated with poor outcomes and BTK inhibitor resistance in mantle cell lymphoma. Blood Cancer J. 2023;13(1):156. doi:10.1038/s41408-023-00927-2. Go to original source... Go to PubMed...
  56. Balsas P, Veloza L, Clot G, et al. SOX11, CD70, and Treg cells configure the tumor immune microenvironment of aggressive mantle cell lymphoma. Blood. 2021;138(22):2202-2215. doi:10.1182/blood.2020010527. Go to original source... Go to PubMed...
  57. Assis-Mendonça GR, Fattori A, Rocha RM, et al. Single nucleotide variants in immune-response genes and the tumor microenvironment composition predict progression of mantle cell lymphoma. BMC Cancer. 2021;21(1):209. doi:10.1186/s12885-021-07891-9. Go to original source... Go to PubMed...
  58. Karolova J, Radek M, Helman K, et al. PD-1, PD-L1 and PD-L2 expression in mantle cell lymphoma and healthy population. Folia Biol (Praha). 2020;66(4):117-122. doi:10.14712/fb2020066040117. Go to original source... Go to PubMed...
  59. Lokhande L, Nilsson D, de Matos Rodrigues J, et al. Quantification and profiling of early and late differentiation stage T cells in mantle cell lymphoma reveals immunotherapeutic targets in subsets of patients. Cancers (Basel). 2024;16(13):2289. doi:10.3390/cancers16132289. Go to original source... Go to PubMed...
  60. Zhang XY, Xu J, Zhu HY, et al. Negative prognostic impact of low absolute CD4+ T cell counts in peripheral blood in mantle cell lymphoma. Cancer Sci. 2016;107(10):1471-1476. doi:10.1111/cas.13020. Go to original source... Go to PubMed...
  61. Nygren L, Wasik AM, Baumgartner-Wennerholm S, et al. T-cell levels are prognostic in mantle cell lymphoma. Clin Cancer Res. 2014;20(23):6096-6104. doi:10.1158/1078-0432.CCR-14-0889. Go to original source... Go to PubMed...
  62. Qualls D, Kumar A, Epstein-Peterson ZD. Targeting the immune microenvironment in mantle cell lymphoma: implications for current and emerging therapies. Leuk Lymphoma. 2022;63(11):2515-2527. doi:10.1080/10428194.2022.2086244. Go to original source... Go to PubMed...
  63. Aroldi A, Mauri M, Ramazzotti D, et al. Effects of blocking CD24 and CD47 "don't eat me" signals in combination with rituximab in mantle-cell lymphoma and chronic lymphocytic leukaemia. J Cell Mol Med. 2023;27(20):3053-3064. doi:10.1111/jcmm.17868. Go to original source... Go to PubMed...
  64. Nikkarinen A, Lokhande L, Amini RM, et al. Soluble CD163 predicts outcome in both chemoimmunotherapy and targeted therapy-treated mantle cell lymphoma. Blood Adv. 2023;7(18):5304-5313. doi:10.1182/bloodadvances.2023010052. Go to original source... Go to PubMed...
  65. Zhang S, Jiang VC, Han G, et al. Longitudinal single-cell profiling reveals molecular heterogeneity and tumor-immune evolution in refractory mantle cell lymphoma. Nat Commun. 2021;12(1):2877. doi:10.1038/s41467-021-22872-z. Go to original source... Go to PubMed...
  66. Han G, Deng Q, Marques-Piubelli ML, et al. Follicular lymphoma microenvironment characteristics associated with tumor cell mutations and MHC class II expression. Blood Cancer Discov. 2022;3(5):428-443. doi:10.1158/2643-3230.BCD-21-0075. Go to original source... Go to PubMed...
  67. Rodriguez S, Alizadeh M, Lamaison C, et al. Follicular lymphoma regulatory T-cell origin and function. Front Immunol. 2024;15:1391404. doi:10.3389/fimmu.2024.1391404. Go to original source... Go to PubMed...
  68. Radtke AJ, Roschewski M. The follicular lymphoma tumor microenvironment at single-cell and spatial resolution. Blood. 2024;143(12):1069-1079. doi:10.1182/blood.2023020999 Go to original source... Go to PubMed...
  69. Anagnostou T, Yang ZZ, Jalali S, et al. Characterization of immune exhaustion and suppression in the tumor micro­environment of splenic marginal zone lymphoma. Leukemia. 2023;37(7):1485-1498. doi:10.1038/s41375-023-01911-2. Go to original source... Go to PubMed...
  70. Cholujova D, Beke G, Hunter ZR, et al. Dysfunctions of innate and adaptive immune tumor microenvironment in Waldenström macroglobulinemia. Int J Cancer. 2023;152(9):1947-1963. doi:10.1002/ijc.34405. Go to original source... Go to PubMed...
  71. Siciliano MC, Bertolazzi G, Morello G, et al. Tumor microenvironment of Burkitt lymphoma: different immune signatures with different clinical behavior. Blood Adv. 2024;8(16):4330-4343. doi:10.1182/bloodadvances.2023011506. Go to original source... Go to PubMed...
  72. Shokralla T. Created in BioRender; 2025. Available from: https://BioRender.com/hotb9c1.




Oncology

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.