Onkologie. 2023:17(1):51-56 | DOI: 10.36290/xon.2023.012

Mechanisms of resistance to melanoma immunotherapy

Linda Řandová1, Ondřej Kodet1, 2, 3
1 Dermatovenerologická klinika, 1. LF UK a VFN, Praha
2 Anatomický ústav, 1. LF UK, Praha
3 BIOCEV - Biotechnologické a biomedicínské centrum, Akademie věd a Univerzity Karlovy ve Vestci u Prahy

The treatment of melanoma has seen significant progress over the past 12 years. Its basis is immunotherapy using check-point inhibitors. Unfortunately, despite the long-term therapeutic response that can be achieved, many patients experience lower rates of therapeutic responses and failure with this form of treatment even after an initial good treatment response. These treatment complications are the subject of many studies that document individual mechanisms of primary and secondary resistance to melanoma immunotherapy. The study comprehensively describes contemporary knowledge about particular resistance mechanisms to melanoma treatment.

Keywords: melanoma, check-point inhibitors, primary and secondary resistence.

Accepted: February 22, 2023; Published: March 1, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Řandová L, Kodet O. Mechanisms of resistance to melanoma immunotherapy. Onkologie. 2023;17(1):51-56. doi: 10.36290/xon.2023.012.
Download citation

References

  1. Frelaut M, du Rusquec P, de Moura A, et al. Pseudoprogression and Hyperprogression as New Forms of Response to Immunotherapy. BioDrugs. 2020;34(4):463-476. doi:10.1007/s40259-020-00425-y. Go to original source... Go to PubMed...
  2. Gide TN, Wilmott JS, Scolyer RA, et al. Primary and acquired resistance to immune check-point inhibitors in metastatic melanoma. Clin Cancer Res. 2018;24(6):1260-1270. doi:10.1158/1078-0432.CCR-17-2267. Go to original source... Go to PubMed...
  3. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711-723. doi:10.1056/NEJMoa1003466. Go to original source... Go to PubMed...
  4. Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. N Engl J Med. 2011;364(26):2517-2526. doi:10.1056/NEJMoa1104621. Go to original source... Go to PubMed...
  5. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535-1546. doi:10.1056/NEJMoa1910836. Go to original source... Go to PubMed...
  6. Robert C, Long G V., Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320-330. doi:10.1056/NEJMoa1412082. Go to original source... Go to PubMed...
  7. Schachter J, Ribas A, Long GV, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390(10105):1853-1862. doi:10.1016/S0140-6736(17)31601-X. Go to original source... Go to PubMed...
  8. Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(11):1480-1492. doi:10.1016/S1470-2045(18)30700-9. Go to original source... Go to PubMed...
  9. Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930-2940. doi:10.1172/JCI91190. Go to original source... Go to PubMed...
  10. Hugo W, Zaretsky JM, Sun L, et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell. 2016;165(1):35-44. doi:10.1016/j.cell.2016.02.065. Go to original source... Go to PubMed...
  11. Vilain RE, Menzies AM, Wilmott JS, et al. Dynamic changes in PD-L1 expression and immune infiltrates early during treatment predict response to PD-1 blockade in Melanoma. Clin Cancer Res. 2017;23(17):5024-5033. doi:10.1158/1078-0432.CCR-16-0698. Go to original source... Go to PubMed...
  12. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189-2199. doi:10.1056/NEJMoa1406498. Go to original source... Go to PubMed...
  13. Jiang T, Shi T, Zhang H, et al. Tumor neoantigens: From basic research to clinical applications. J Hematol Oncol. 2019;12(1). doi:10.1186/s13045-019-0787-5. Go to original source... Go to PubMed...
  14. Jäger E, Ringhoffer M, Altmannsberger M, et al. Immunoselection in vivo: Independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer. 1997;71(2):142-147. doi:10.1002/(SICI)1097-0215(19970410)71:23.0.CO;2-0. Go to original source...
  15. McGranahan N, Furness AJS, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune check-point blockade. Science (80-). 2016;351(6280):1463-1469. doi:10.1126/science.aaf1490. Go to original source... Go to PubMed...
  16. Gros A, Parkhurst MR, Tran E, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016;22(4):433-438. doi:10.1038/nm.4051. Go to original source... Go to PubMed...
  17. Nowicki TS, Hu-Lieskovan S, Ribas A. Mechanisms of Resistance to PD-1 and PD-L1 Blockade. Cancer J (United States). 2018;24(1):47-53. doi:10.1097/PPO.0000000000000303. Go to original source... Go to PubMed...
  18. Long G V, Larkin J, Ascierto PA, et al. melanoma and other skin tumours 1112PD PD-L1 expression as a biomarker for nivolumab (NIVO) plus ipilimumab (IPI) and NIVO alone in advanced melanoma (MEL): A pooled analysis. Ann Oncol. 2016;27:379-400. doi:10.1093/annonc/mdw379.7. Go to original source...
  19. Carlino M, Ribas A, Gonzalez R, et al. Abstract CT004: KEYNOTE-006: PD-L1 expression and efficacy in patients (Pts) treated with pembrolizumab (pembro) vs ipilimumab (IPI) for advanced melanoma. In: American Association for Cancer Research (AACR); 2016:CT004-CT004. doi:10.1158/1538-7445.am2016-ct004. Go to original source...
  20. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373(1):23-34. doi:10.1056/NEJMoa1504030. Go to original source... Go to PubMed...
  21. Parsa AT, Waldron JS, Panner A, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13(1):84-88. doi:10.1038/nm1517. Go to original source... Go to PubMed...
  22. Peng W, Qing Chen J, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy Analysis and interpretation of data (statistical analysis and bioinformatic analysis): HHS Public Access. Cancer Discov. 2016;6(2):202-216. doi:10.1158/2159-8290.CD-15-0283. Go to original source... Go to PubMed...
  23. Ni K, O'Neill H. The role of dendritic cells in T cell activation. Immunol Cell Biol. 1997;75(3):223-230. doi:10.1038/icb.1997.35. Go to original source... Go to PubMed...
  24. Wu W, Wang W, Wang Y, et al. IL-37b suppresses T cell priming by modulating dendritic cell maturation and cytokine production via dampening ERK/NF-κB/S6K signalings. Acta Biochim Biophys Sin (Shanghai). 2015;47(8):597-603. doi:10.1093/abbs/gmv058. Go to original source... Go to PubMed...
  25. Lindenberg JJ, van de Ven R, Lougheed SM, et al. Functional characterization of a STAT3-dependent dendritic cell-derived CD14 + cell population arising upon IL-10-driven maturation . Oncoimmunology. 2013;2(4):e23837. doi:10.4161/onci.23837. Go to original source... Go to PubMed...
  26. Emeagi PU, Maenhout S, Dang N, et al. Downregulation of Stat3 in melanoma: Reprogramming the immune microenvironment as an anticancer therapeutic strategy. Gene Ther. 2013;20(11):1085-1092. doi:10.1038/gt.2013.35. Go to original source... Go to PubMed...
  27. Hong M, Puaux AL, Huang C, et al. Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring T-cell infiltration and tumor control. Cancer Res. 2011;71(22):6997-7009. doi:10.1158/0008-5472.CAN-11-1466. Go to original source... Go to PubMed...
  28. Harlin H, Meng Y, Peterson AC, et al. Chemokine expression in melanoma metastases associated with CD8 + T-CeII recruitment. Cancer Res. 2009;69(7):3077-3085. doi:10.1158/0008-5472.CAN-08-2281. Go to original source... Go to PubMed...
  29. Yue C, Shen S, Deng J, et al. STAT3 in CD8+ T cells inhibits their tumor accumulation by downregulating CXCR3/CXCL10 axis. Cancer Immunol Res. 2015;3(8):864-870. doi:10.1158/2326-6066.CIR-15-0014. Go to original source... Go to PubMed...
  30. Kučera J, Strnadová K, Dvořánková B, et al. Serum proteomic analysis of melanoma patients with immunohistochemical profiling of primary melanomas and cultured cells: Pilot study. Oncol Rep. 2019;42(5):1793-1804. doi:10.3892/or.2019.7319. Go to original source... Go to PubMed...
  31. Bouzin C, Brouet A, De Vriese J, et al O. Effects of Vascular Endothelial Growth Factor on the Lymphocyte-Endothelium Interactions: Identification of Caveolin-1 and Nitric Oxide as Control Points of Endothelial Cell Anergy. J Immunol. 2007;178(3):1505-1511. doi:10.4049/jimmunol.178.3.1505. Go to original source... Go to PubMed...
  32. Huang H, Langenkamp E, Georganaki M, et al. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-κB-induced endothelial activation. FASEB J. 2015;29(1):227-238. doi:10.1096/fj.14-250985. Go to original source... Go to PubMed...
  33. Chen PL, Roh W, Reuben A, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune check-point blockade. Cancer Discov. 2016;6(8):827-837. doi:10.1158/2159-8290.CD-15-1545. Go to original source... Go to PubMed...
  34. Ott PA, Stephen Hodi F, Buchbinder EI. Inhibition of immune check-points and vascular endothelial growth factor as combination therapy for metastatic melanoma: An overview of rationale, preclinical evidence, and initial clinical data. Front Oncol. 2015;5(SEP). doi:10.3389/fonc.2015.00202. Go to original source... Go to PubMed...
  35. Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16(2):121-126. doi:10.1038/nrc.2016.2. Go to original source... Go to PubMed...
  36. Restifo NP, Marincola FM, Kawakami Y, et al. Loss of functional beta2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst. 1996;88(2):100-108. doi:10.1093/jnci/88.2.100. Go to original source... Go to PubMed...
  37. Del Campo AB, Kyte JA, Carretero J, et al. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int J Cancer. 2014;134(1):102-113. doi:10.1002/ijc.28338. Go to original source... Go to PubMed...
  38. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819-829. doi:10.1056/NEJMoa1604958. Go to original source... Go to PubMed...
  39. Jin W. Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition. Cells. 2020;9(1):217. doi:10.3390/cells9010217. Go to original source... Go to PubMed...
  40. Karachaliou N, Gonzalez-Cao M, Crespo G, et al. Interferon gamma, an important marker of response to immune check-point blockade in non-small cell lung cancer and melanoma patients. Ther Adv Med Oncol. 2018;10. doi:10.1177/1758834017749748. Go to original source... Go to PubMed...
  41. Kim TK, Herbst RS, Chen L. Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends Immunol. 2018;39(8):624-631. doi:10.1016/j.it.2018.05.001. Go to original source... Go to PubMed...
  42. Koyama S, Akbay EA, Li YY, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune check-points. Nat Commun. 2016;7. doi:10.1038/ncomms10501. Go to original source... Go to PubMed...
  43. Taube JM, Young GD, McMiller TL, et al. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: Implications for PD-1 pathway blockade. Clin Cancer Res. 2015;21(17):3969-3976. doi:10.1158/1078-0432.CCR-15-0244. Go to original source... Go to PubMed...
  44. Vétizou M, Pitt JM, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science (80- ). 2015;350(6264):1079-1084. doi:10.1126/science.aad1329. Go to original source... Go to PubMed...
  45. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084-1089. doi:10.1126/science.aac4255. Go to original source... Go to PubMed...
  46. Shaikh FY, Gills JJ, Sears CL. Impact of the microbiome on check-point inhibitor treatment in patients with non-small cell lung cancer and melanoma. EBioMedicine. 2019;48:642-647. doi:10.1016/j.ebiom.2019.08.076. Go to original source... Go to PubMed...
  47. McQuade JL, Ologun GO, Arora R, Wargo JA. Gut Microbiome Modulation Via Fecal Microbiota Transplant to Augment Immunotherapy in Patients with Melanoma or Other Cancers. Curr Oncol Rep. 2020;22(7). doi:10.1007/s11912-020-00913-y. Go to original source... Go to PubMed...
  48. Yang M, Wang Y, Yuan M, et al. Antibiotic administration shortly before or after immunotherapy initiation is correlated with poor prognosis in solid cancer patients: An up-to-date systematic review and meta-analysis. Int Immunopharmacol. 2020;88. doi:10.1016/j.intimp.2020.106876. Go to original source... Go to PubMed...
  49. Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science (80- ). 2018;359(6371):97-103. doi:10.1126/science.aan4236. Go to original source... Go to PubMed...
  50. Chaput N, Lepage P, Coutzac C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368-1379. doi:10.1093/annonc/mdx108. Go to original source... Go to PubMed...
  51. Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science (80- ). 2018;359(6371):104-108. doi:10.1126/science.aao3290. Go to original source... Go to PubMed...
  52. Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(7741):600-605. doi:10.1038/s41586-019-0878-z. Go to original source... Go to PubMed...
  53. Hegazy AN, West NR, Stubbington MJT, et al. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation. Gastroenterology. 2017;153(5):1320-1337.e16. doi:10.1053/j.gastro.2017.07.047. Go to original source... Go to PubMed...
  54. Frankel AE, Coughlin LA, Kim J, et al. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Check-point Therapy Efficacy in Melanoma Patients. Neoplasia (United States). 2017;19(10):848-855. doi:10.1016/j.neo.2017.08.004. Go to original source... Go to PubMed...
  55. Ralli M, Botticelli A, Visconti IC, et al. Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J Immunol Res. 2020;2020. doi:10.1155/2020/9235638. Go to original source... Go to PubMed...
  56. Kitano S, Nakayama T, Yamashita M. Biomarkers for Immune Check-point Inhibitors in Melanoma. Front Oncol. 2018;8(July):1-8. doi:10.3389/fonc.2018.00270. Go to original source... Go to PubMed...




Oncology

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.