Onkologie. 2012:6(3):143-145

Postižení kmenových buněk u myeloproliferativních neoplázií

Radek C.Skoda
Experimental Hematology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland

Myeloproliferativní neoplázie (MPN) jsou klonální poruchy, které vznikají na úrovni hematopoetických kmenových buněk. Somatické

mutace, jako např. JAK2V617F, lze nalézt u purifikovaných hematopoetických kmenových buněk a jejich potomstva. Nicméně je možné

objevit výrazné interindividuální rozdíly v mutantní alelické zátěži u zralých krvinek pacienta a v počtu hematopoetických linií, které

jsou zasažené. Ne všichni pacienti s MPN vykazují přítomnost klonálních markerů u B lymfocytů a T buňky jsou téměř vždy vyloučeny.

U mnoha pacientů s MPN je možné objevit více než jednu somatickou mutaci a pořadí, v němž se tyto mutace objevují, se může u jednotlivých

pacientů lišit. Myší modely ukázaly, že MPN může být iniciována JAK2V617F bez přítomnosti dalších mutací. Všechny dosavadní

myší modely jsou však založeny na polyklonálním onemocnění. Za účelem navržení lepších léčebných postupů a potažmo i vyléčení

MPN bude důležité pochopit časné kroky při iniciaci choroby.

Keywords: myeloproliferativní neoplázie, Janus kináza 2, hierarchie kmenových buněk, onemocnění iniciující buňky, klonalita.

Published: July 31, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Skoda RC. Postižení kmenových buněk u myeloproliferativních neoplázií. Onkologie. 2012;6(3):143-145.
Download citation

References

  1. Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L. Polycythemia vera: stem-cell and probable clonal origin of the disease. New England Journal of Medicine 1976; 295(17): 913-916. Go to original source... Go to PubMed...
  2. Beutler E, Yeh M, Fairbanks VF. The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker. Proc Natl Acad Sci USA 1962; 48: 9-16. Go to original source... Go to PubMed...
  3. Raskind WH, Jacobson R, Murphy S, et al. Evidence for the involvement of B lymphoid cells in polycythemia vera and essential thrombocytosis. J Clin Invest 1985; 75: 1388-. Go to original source... Go to PubMed...
  4. Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961; 190: 372-373. Go to original source... Go to PubMed...
  5. Chen GL, Prchal JT. X linked clonality testing: interpretation and limitations. Blood 2007. Go to original source...
  6. Swierczek SI, Agarwal N, Nussenzveig RH, et al. Hematopoiesis is not clonal in healthy elderly women. Blood 2008; 112(8): 3186-3193. Go to original source... Go to PubMed...
  7. Swierczek SI, Piterkova L, Jelinek J, et al. Methylation of AR locus does not always reflect X chromosome inactivation state. Blood 2012; 119(13): e100-109. Go to original source... Go to PubMed...
  8. Harrison CN, Gale RE, Machin SJ, Linch DC. A large proportion of patients with a diagnosis of essential thrombocythemia do not have a clonal disorder and may be at lower risk of thrombotic complications. Blood 1999; 93(2): 417-424. Go to original source...
  9. Liu E, Jelinek J, Pastore YD, Guan Y, Prchal JF, Prchal JT. Discrimination of polycythemias and thrombocytoses by novel, simple, accurate clonality assays and comparison with PRV1 expression and BFU-E response to erythropoietin. Blood 2003; 101(8): 3294-3301. Go to original source... Go to PubMed...
  10. Rege-Cambrin G, Mecucci C, Tricot G, et al. A chromosomal profile of polycythemia vera. Cancer Genetics And Cytogenetics 1987; 25(2): 233-245. Go to original source... Go to PubMed...
  11. Diez-Martin JL, Graham DL, Petitt RM, Dewald GW. Chromosome studies in 104 patients with polycythemia vera. Mayo Clinic Proceedings 1991; 66(3): 287-299. Go to original source...
  12. Mertens F, Johansson B, Heim S, Kristoffersson U, Mitelman F. Karyotypic patterns in chronic myeloproliferative disorders: report on 74 cases and review of the literature. Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK 1991; 5(3): 214-220.
  13. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360(22): 2289-2301. Go to original source... Go to PubMed...
  14. Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genetics 2010; 42(8): 722-726. Go to original source... Go to PubMed...
  15. Klampfl T, Harutyunyan A, Berg T, et al. Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 2011; 118(1): 167-176. Go to original source... Go to PubMed...
  16. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood 2011; 118(7): 1723-1735. Go to original source... Go to PubMed...
  17. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434(7037): 1144-1148. Go to original source... Go to PubMed...
  18. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352(17): 1779-1790. Go to original source... Go to PubMed...
  19. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7(4): 387-397. Go to original source... Go to PubMed...
  20. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365(9464): 1054-1061. Go to original source...
  21. Passamonti F, Rumi E, Pietra D, et al. Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood 2006; 107(9): 3676-3682. Go to original source... Go to PubMed...
  22. Kralovics R, Teo SS, Li S, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood 2006; 108(4): 1377-1380. Go to original source... Go to PubMed...
  23. Nussenzveig RH, Swierczek SI, Jelinek J, et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol 2007; 35(1): 32-38. Go to original source... Go to PubMed...
  24. Jamal R, Belisle C, Lessard MC, et al. Evidence suggesting the presence of a stem cell clone anteceding the acquisition of the JAK2V617F mutation. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK 2008; 22(7): 1472-1474. Go to original source... Go to PubMed...
  25. Beer PA, Jones AV, Bench AJ, et al. Clonal diversity in the myeloproliferative neoplasms: independent origins of genetically distinct clones. Br J Haematol 2009. Go to original source...
  26. Schaub FX, Looser R, Li S, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood 2010; 115(10): 2003-2007. Go to original source... Go to PubMed...
  27. Kiladjian JJ, Masse A, Cassinat B, et al. Clonal analysis of erythroid progenitors suggests that pegylated interferon alpha-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK 2010; 24(8): 1519-1523. Go to original source... Go to PubMed...
  28. Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 1981; 58: 916-918. Go to original source...
  29. El Kassar N, Hetet G, Briere J, Grandchamp B. Clonality analysis of hematopoiesis in essential thrombocythemia: Advantages of studying T lymphocytes and platelets. Blood 1997; 89(1): 128-134. Go to original source...
  30. Anger B, Janssen JW, Schrezenmeier H, Hehlmann R, Heimpel H, Bartram CR. Clonal analysis of chronic myeloproliferative disorders using X-linked DNA polymorphisms. Leukemia 1990; 4(4): 258-261.
  31. Kreipe H, Jaquet K, Felgner J, Radzun HJ, Parwaresch MR. Clonal granulocytes and bone marrow cells in the cellular phase of agnogenic myeloid metaplasia. Blood 1991; 78(7): 1814-1817. Go to original source...
  32. Li S, Kralovics R, De Libero G, Theocharides A, Gisslinger H, Skoda RC. Clonal heterogeneity in polycythemia vera patients with JAK2 exon12 and JAK2V617F mutations. Blood 2008; 111(7): 3863-3866. Go to original source... Go to PubMed...
  33. Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6(6): 587-596. Go to original source... Go to PubMed...
  34. Chan WI, Huntly BJ. Leukemia stem cells in acute myeloid leukemia. Seminars in oncology 2008; 35(4): 326-335. Go to original source... Go to PubMed...
  35. Lane SW, Gilliland DG. Leukemia stem cells. Seminars in cancer biology 2010; 20(2): 71-76. Go to original source... Go to PubMed...
  36. Jamieson CH, Gotlib J, Durocher JA, et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci U S A 2006; 103(16): 6224-6229. Go to original source... Go to PubMed...
  37. Anand S, Stedham F, Beer P, et al. Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood 2011; 118(1): 177-181. Go to original source... Go to PubMed...
  38. Li J, Kent DG, Chen E, Green AR. Mouse models of myeloproliferative neoplasms: JAK of all grades. Disease models & mechanisms 2011; 4(3): 311-317. Go to original source... Go to PubMed...
  39. Van Etten RA, Koschmieder S, Delhommeau F, et al. The Ph-positive and Ph-negative myeloproliferative neoplasms: some topical pre-clinical and clinical issues. Haematologica 2011; 96(4): 590-601. Go to original source... Go to PubMed...
  40. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006; 108(5): 1652-1660. Go to original source... Go to PubMed...
  41. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107(11): 4274-4281. Go to original source... Go to PubMed...
  42. Bumm TG, Elsea C, Corbin AS, et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 2006; 66(23): 11156-11165. Go to original source... Go to PubMed...
  43. Zaleskas VM, Krause DS, Lazarides K, et al. Molecular Pathogenesis and Therapy of Polycythemia Induced in Mice by JAK2 V617F. PLoS ONE 2006; 1: e18. Go to original source... Go to PubMed...
  44. Tiedt R, Hao-Shen H, Sobas MA, et al. Ratio of mutant JAK2V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 2008; 111(8): 3931-3940. Go to original source... Go to PubMed...
  45. Shide K, Shimoda HK, Kumano T, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia 2008; 22(1): 87-95. Go to original source... Go to PubMed...
  46. Xing S, Wanting TH, Zhao W, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 2008; 111(10): 5109-5117. Go to original source... Go to PubMed...
  47. Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG. Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 2010; 115(17): 3589-3597. Go to original source... Go to PubMed...
  48. Mullally A, Lane SW, Ball B, et al. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 2010; 17(6): 584-596. Go to original source... Go to PubMed...
  49. Marty C, Lacout C, Martin A, et al. Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice. Blood 2010; 116(5): 783-787. Go to original source... Go to PubMed...
  50. Li J, Spensberger D, Ahn JS, et al. JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia. Blood 2010; 116(9): 1528-1538. Go to original source... Go to PubMed...




Oncology

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.